

Imperial College London

CryptoCurrencies & Contracts

Devcon 5 Research Meetup

11 October 2019, Osaka, Japan

Pay-to-Win

Incentive Attacks on Proof-of-Work

Cryptocurrencies

Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin,

Itay Tsabary, Ittay Eyal, Peter Gazi,

Sarah Meiklejohn, and Edgar Weippl

"The system is secure as long as **honest** nodes collectively control more CPU power than any cooperating group of attacker nodes."

Satoshi Nakamoto

... relies on 2/3 of the computational power being honest

But can we even determine if this is the case?

- Miners can collude
- Can be same entity

A Deep Dive into Bitcoin Mining Pools: An Empirical Analysis of Mining Shares. Romiti M, Judmayer A, Zamyatin A, Haselhofer B. *Workshop on the Economics of Information Security (WEIS)*, 2019

Instead of only honest / dishonest actors, BAR model assumes:

- **Byzantine:** our adversary, behaves dishonestly
- Altruistic: altruistic motives, behave honestly
- **Rational:** may deviate from rules to maximize profit

 \rightarrow Bribing attacks assume economically rational actors can be bribed into misbehaving

Idea of Bribing attacks:

- Attacker does not need to be a miner
- Offers payment to miners to attack underlying chain
- Ideally: miners do not have to trust the adversary
 - e.g. via smart contracts

Goals:

• Censorship, double spending, reducing active hash rate, destruction on the coin, ...

* More about this later

Impact and Required Interference

Impact on Transactions

Revision	Change published, confirmed or agreed TX	
Re-ordering	Change ordering of published, confirmed or agreed TX in a block	
Exclusion / Censorship	Prevent TX from from being included in the chain (for some period)	

Interference with Consensus

- **Deep forks** Exceeding the security parameter **k selected by the victim**
- Near forks Fork, but depth is not dependent on victim's k parameter
- No forks

Further Properties

- 1. Required attacker hash rate
- 2. Required rational miner hash rate
- 3. Distract hash rate?
- 4. Smart contracts required?
- 5. Must the attacker trust miners?
- 6. Must miners trust the attacker?
- 7. Are failed attacks compensated?
- Coordination / payment in-band or out-of-band (cross-chain)?
 ...

See paper for more details!

Classification of Incentive Attacks

	Tx rev.	Tx ord.	Tx excl.	Required chain reorganization	Attacker hashrate α	Rational hashrate ω	Distracts hashrate	Requires smart contract	Payment	Trustless for attacker	Trustless for collaborator	Subsidy	Compensates if attack fails
Checklocktime bribes [7]	1	×	×	Deep fork	×	$\approx \left[\frac{1}{2}, 1\right]$	×	×	in-band	1	~	×	×
Whale Transactions [19]	1	×	×	Deep fork	×	$\approx \left[\frac{1}{2}, 1\right]$	×	×	in-band	1	~	×	×
Script Puzzle double-spend [30]	1	~	1	Deep fork	$(0, \frac{1}{2})$	1-lpha	1	×	in-band	~	×	×	~
Script Puzzle 38.2% attack [30]	×	~	1	Near-/No forks	$[0.382, \frac{1}{2})$	$1 - \alpha$	1	?†	out-of-band	?†	?†	×	1
Proof-of-Stale blocks [20], [32]	-*	-*	-*	-*	×	-	1	1	out-of-band	~	1	×	1
CensorshipCon [21]	×	~	1	Near-/No forks	$[\frac{1}{3}, \frac{1}{2})$	$[\frac{1}{3}, \frac{2}{3})$	1	1	in-band	~	×	1	×
HistoryRevisionCon [21]	1	×	×	Deep fork	×	$\approx \left[\frac{1}{2}, 1\right]$	×	1	in-band	1	~	1	×
GoldfingerCon [21]	-	-	✓all	No fork	×	$\approx \left[\frac{1}{2}, 1\right]$	×	1	out-of-band	1	1	×	1
Pitchforks [15]	-	-	✓all	No fork	×	$(\frac{1}{3}, 1]$	1	×	out-of-band	1	1	1	×
Front-running [10], [12]	×	1	×	No fork	×	(0, 1]	×	×	in-band	×	1	×	1
Pay per Miner Censorship [33]	×	×	1	No fork	×	1	×	1	in-band	1	1	×	×
Pay per Block Censorship [33]	×	×	1	No fork	×	1	×	1	in-band	1	1	×	1
Pay per Commit Censorship [33]	X	×	1	Near-/No fork	×	1	×	1	in-band	1	1	×	×
P2W Tx Excl.& Ord.	×	1	1	Near-/No forks	×	$[\frac{1}{2}, 1]$	×	1	out-of-band	1	1	×	1
P2W Tx Rev. & Excl. & Ord.	1	1	1	Deep fork	×	$[\frac{1}{2}, 1]$	×	1	out-of-band	1	1	×	1
P2W Tx Ord. Appendix E	×	1	×	No fork	×	(0, 1]	×	1	in-band	1	1	×	×
P2W Tx Excl. Appendix F	×	×	1	Near-/No forks	×	$[\frac{1}{2}, 1]$	×	1	in-band	1	1	×	×

See paper for more details!

Bribing Myths

"Pfff, bribing is too expensive anyway..."

Risk of failure must be compensated

Existing bribing attacks:

- Payment only if attack succeeds
- Overcompensate risk via high bribes

Risk of failure must be compensated

Existing bribing attacks:

- Payment only if attack succeeds
- Overcompensate risk via high bribes

Pay-to-Win (This work):

- Always pay miners, even if attack fails
- Miners face no financial risk
- \rightarrow only small bribes required

cheaper than existing attacks

"But miners will not attack their own coin!"

- One of the oldest arguments in this space
- Assumes miners have long term stake in their system

"But miners will not attack their own coin!"

- One of the oldest arguments in this space
- Assumes miners have long term stake in their system

Does not consider:

• Private information

- One of the oldest arguments in this space
- Assumes miners have long term stake in their system

"But miners will not allock their own coin!"

Does not consider:

• Private information

• Cross-chain ("out of band") attacks (This work)

Cross-Chain Bribing Attacks

• Coordination and payout occur on another chain

- Coordination and payout occur on another chain
 - → *Ephemeral mining relays* (This work)
 - 1. Verify state agreement & evolution of target chain
 - 2. Check validity of blocks (pre-defined block & TX templates)
 - 3. Track forks
 - 4. Check correct execution of attack
 - 5. Handle payouts depending on outcome

"But is this not too complex and inefficient?"

• PoW verification needs to be supported by the funding chain!

- PoW verification needs to be supported by the funding chain!
- PoC implementation of components for attacks on BTC, coordinated on ETH

Exaggerated example: 24h attack on Bitcoin (144 blocks)

- Costs to run relay:
 ~ 10-23 USD
- For comparison: Value of single BTC block (excl. TX fees):
 ~ 77 000 USD

Operation	Approx. costs					
operation	Gas	USD				
Initialization	244 137	0.21				
Block parsing and verification	174 929	0.15				
Block header storage	141 534	0.12				
Transaction parsing	117 253	0.1				
Markle tree verification	80 257 - 194 351	0.07 - 0.16				

Gas price: 5 Gwei, Exchange rates as per 10 May 2019 (168.01 USD/ETH)

Pay-to-Win Attacks

- Coordination and payouts happen out-of-band (cross-chain)
 Target chain (e.g. Bitcoin) vs *funding* chain (e.g. Ethereum)
- Miners are always compensated (even for failed attacks)
- Uses smart contracts on funding chain
 → trustless for attacker and miners!
- 2 Variants:
 - **No / near fork**: ordering and exclusion/censorship
 - **Deep fork**: revision, ordering and exclusion/censorship

Example: double spend on BTC Attack suceeds if:

- > k blocks on main chain
- > k+1 blocks on attack chain

BTC

ETH

Example: double spend on BTC Attack suceeds if:

- > k blocks on main chain
- > k+1 blocks on attack chain

Attacker waits until victim's TX is included and has ${\bf k}$ confirmations (${\bf k}$ defined by victim)

ETH

Initialization Phase:

Attacker initializes contract with

- *block templates* \rightarrow contain conditions for attack •
- compensation •

Block Templates

Miners can only freely choose:

- *nonce* ... for mining iteration
- coinbase ... link Ethereum account to block

Block Header		nVersion	
Version		#vin = 1	
PrevBlockHash			hash
MerkleRoot			n
		vin[0]	coinbaseLen
lime	-		coinbase
nBits			nSequence
nonce		#vout = 1	
	-		nValue
		vout[0]	scriptPubkeyLen
			scriptPubkey

Coinbase TX

nLockTime

Block Templates

- *nonce* ... for mining iteration •
- coinbase ... link Ethereum account to block

	Block Head	er	nVersion		
Miners can only freely choose:	Version		#vin = 1		
• <i>nonce</i> for mining iteration	PrevBlockHash			hash	
	MerkleRoot		vin[0]	n	
 coinbase link Ethereum account to block 	Time			coinbaseLen	
				coinbase	
	nBits			nSequence	
	nonce		#vout = 1		
				nValue	
Note: BTC block reward must go to	vout[0]	scriptPubkeyLen			
\rightarrow block reward compensation after				scriptPubkey	
The attack ends in EIH		Coinbase TX	nLockTim	e	

Initialization Phase:

Attacker initializes contract with

- *block templates*→ contain conditions for attack
- compensation

Once initialized: no abort! (or very high timelock)

 \rightarrow Reason: race conditions

Attack Phase:

- Miners mine on block templates, executing the attack
- Attacker can extend the attack (new templates + funds)

Payout Phase: Successful attack

- Block rewards (r) for k main chain blocks
- Block reward + bribe (r + e) for attack chain blocks
- → **Recall**: attacker receives BTC block reward!

ETH

Payout Phase: Failed Attack

Miners

BTC

• Block rewards (r) for submitted attack chain blocks

Required funds at the start of attack:

- N ... attack duration
- **e** ... bribe
- r ... block reward
- ${\bf k} \dots$ confirmation required by victim

k = 6 (min. 6 main chain + 7 attack chain blocks to succeed)

- r = 14 BTC (~ block reward)
- *e* = 1 *BTC* (bribe can be set way lower!)

Rational miners only (no victim hash rate)

- Failed attack ~ 98 BTC
- Successful attack ~ 91 BTC

k = 6 (main chain must have 6 blocks before double spend succeeds)

- r = 14 BTC (~ block reward)
- e = 1 BTC (bribe can be set way lower!)

Altruistic miners (victim has hash rate)

ω	whale costs	p2w costs c_{failed} (worst case lose)	% whale	p2w costs $c_{success}$ (worst case win)	% whale	p2w costs (expected win)
0.532	2.93e+23	7305	0.00	577	0.00	144
0.670	999.79	600	60.01	130	13.00	104
0.764	768.09	330	42.96	112	14.58	100
0.828	1265.14	240	18.97	106	8.38	99
0.887	1205.00	195	16.18	103	8.55	98
0.931	1806.67	165	9.13	101	5.59	98
0.968	2178.58	135	6.20	99	4.54	97
0.999	2598.64	120	4.62	98	3.77	97

See paper for more details!

Pros and Cons

+ Difficult to detect (cross-chain)

→ monitor all smart contract chains?

- + Miners have **no risk**
- + Only small bribes necessary
- + No trust required between attacker and miners

- Requires **smart contracts** on funding chain
- Funding chain must be able to **verify PoW** of target chain
- Exchange rate handling

See paper for more discussion!

Crowdfunding

- Use smart contract to coordinate multiple attacks in parallel
- Attackers lock in
 - e.g. double spend TX
 - compensation
- Attack costs are typically fixed!
 - Split among participants

Challenges: timing, sabotage via conflicting attacks, ...

Typically, we assume a global **k** (Backbone model)

Sompolinksy et al. argue: "Take into account TX value!"

Recently:

Zindros argues: "Take into account value of entire block!"

We conjecture: Even this is insufficient!

Implications: Transaction Security

Value of block of TX1 \rightarrow set k1 (e.g. 6)

Implications: Transaction Security

Value of block of $TX1 \rightarrow set k1$ (e.g. 6)

Problem: "juicy" TX2 in prev. block with high value being attacker

- k1 sufficient for TX1 alone... but what if the attack on TX2 occurs anyway?
- What if attacker of TX2 could also attack TX1 as "extra"?
- \rightarrow In practice: crowdfunded attacks

What To Do? (Take With a Grain of Salt)

From theoretical perspective:

"HODLING" is risky!

Only "safety" measure:

As soon as you receive coins \rightarrow spend & transfer risk!

This is theory! Less of a problem in practice.

Devcon 5 Research Meetup

11 October 2019, Osaka, Japan

Pay-to-Win: Incentive Attacks on Proof-of-Work Cryptocurrencies

Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin,

Itay Tsabary, Ittay Eyal, Peter Gazi,

Sarah Meiklejohn, and Edgar Weippl

Questions?